Validation of a new live cell strain system: characterization of plasma membrane stress failure.
نویسندگان
چکیده
Motivated by our interest in lung deformation injury, we report on the validation of a new live cell strain system. We showed that the system maintains a cell culture environment equivalent to that provided by conventional incubators and that its strain ouput was uniform and reproducible. With this system, we defined cell deformation dose (i.e., membrane strain amplitude)-cell injury response relationships in alveolar epithelial cultures and studied the effects of temperature on them. Deformation injury occurred in the form of reversible, nonlethal plasma membrane stress failure events and was quantified as the fraction of cells with uptake and retention of fluorescein-labeled dextran (FITC-Dx). The undeformed control population showed virtually no FITC-Dx uptake at any temperature, which was also true for cells strained by 3%. However, when the membrane strain was increased to 18%, ~5% of cells experienced deformation injury at a temperature of 37 degrees C. Moreover, at that strain, a reduction in temperature to 4 degrees C resulted in a threefold increase in the number of cells with plasma membrane breaks (from 4.8 to 15.9%; P < 0.05). Cooling of cells to 4 degrees C also lowered the strain threshold at which deformation injury was first seen. That is, at a 9% substratum strain, cooling to 4 degrees C resulted in a 10-fold increase in the number of cells with FITC-Dx staining (0.7 vs. 7.5%, P < 0.05). At that temperature, A549 cells offered a 50% higher resistance to shape change (magnetic twisting cytometry measurements) than at 37 degrees C. We conclude that the strain-injury threshold of A549 cells is reduced at low temperatures, and we consider temperature effects on plasma-membrane fluidity, cytoskeletal stiffness, and lipid trafficking as responsible mechanisms.
منابع مشابه
Characterization of an Interesting Novel Mutant Strain of Commercial Saccharomyces cerevisiae
The yeast strains that are resistant to high concentration of ethanol have biotechnological benefits and aresuitable models for physiology and molecular genetics research fields. A novel ethanol-tolerant mutant strain,mut1, derived from the commercial Saccharomyces cerevisiae showed higher ethanol production, and alsodemonstrated resistance to ethanol but not to other alcohols...
متن کاملA New Approach for Stress State - Dependent Flow Localization Failure Bounded Through Ductile Damage in Dynamically Loaded Sheets
In this paper, a new approach is proposed for stress state - dependent flow localization in bifurcation failure model bounded through ductile damage in dynamically loaded sheets. Onset of localized necking is considered in phenomenological way for different strain rates to draw the forming limit diagram (FLD). Using a strain metal hardening exponent in the Vertex theory related to the strain ra...
متن کاملIsolation, Characterization and Standardization of New Infectious Bursal Disease Virus for Development of a Live Vaccine
Background and Aims: Infectious bursal disease (IBD) is an acute contagious viral disease of birds worldwide. The causative virus induces a persistent immune suppression following destroy B lymphocytes precursors in bursal lymphoid follicles. Vaccination is the main strategy for prevention of the disease in commercial poultry industry. Materials and Methods: To produce a live vaccine against th...
متن کاملGreen synthesis of Se nanoparticles and its effect on salt tolerance of barley plants
In this study, selenite ions were reduced to selenium nanoparticles using a leaf extract of barley (Hordeum vulgare L.) plants. Characterization of synthesized nanoparticles using Scanning Electron Microscopy (SEM) and UV-visible spectrophotometry indicated the formation of variable size of selenium nanoparticles, suggesting that leaf extract could form polydispersed nanoparti...
متن کاملDrought-induced chilling tolerance in cucumber involves membrane stabilisation improved by antioxidant system
We assessed changes in ultrastructure, membrane lipid peroxidation and antioxidant systems for cucumbner seedlings subjected to low temperature stress (day/night temperature of 8 oC /5 oC) that had been either pre-treated with 10% PEG for 2 days or not. We found extensive cell structure damage in the non-treated seedlings, whereas the seedlings pretreated with PEG to simulate drought remain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 90 6 شماره
صفحات -
تاریخ انتشار 2001